NeoGen Femoral Nail System
Product Catalog & Surgical Technique
Surgical Technique

Content

PREFACE ... 1
INDICATIONS ... 1
PATIENT PREPARATION ... 2
ENTRY PORTAL .. 3
FEMORAL ANTEGRADE SURGICAL TECHNIQUE FOR STANDARD FEMORAL OR RECON LOCKING MODES ... 4
FRACTURE REDUCTION ... 6
CANAL PREPARATION ... 7
NAIL SELECTION ... 8
DRILL GUIDE ASSEMBLY ... 9
INTERLOCKING FOR FEMORAL MODE .. 10
RECON MODE .. 12
INTERLOCKING FOR RECON MODE .. 13
DISTAL LOCKING ... 16
OPTION—Estimating locking screw length using the Screw Depth Gauge 23
CLOSURE .. 23
INSTRUMENTS & IMPLANTS ... 24
PREFACE

The femoral nails are designed to accommodate a standard femoral locking mode or the Recon locking mode in the same leg. Utilizing the same NeoGen instruments, simplify the surgical approach by allowing placement of the nail through the tip of the greater trochanter. The proximal section of the implant is 13 mm. Screw placement for the reconstruction mode is at the standard 130°. The nail has a 5° anteversion and an anterior bow to match the femur.

INDICATIONS

The indications for intramedullary locking nail include:
- Traumatic fractures
- Pathological fractures
- Re-fractures
- Non-unions
- Reconstructive surgery

PATIENT PREPARATION

Patient is placed supine with unaffected limb extended below the affected limb and trunk. The affected limb is adducted. Flex the affected hip 15°. Apply traction through a skeletal pin or the foot with the fracture table foot holder. Adjust the affected limb for length and rotation by comparison with the unaffected limb. Rotation is further checked by rotating the arm to align the femoral neck anteversion and then making the appropriate correction by foot, usually in 0-15° of external rotation. Decubitus position may also be used with the fracture table, in this situation because of the change of position of the femoral head, the leg is usually internally rotated 10-15°. This is best checked by visualizing the femoral anteversion proximally and matching it with correct rotation at the knee (Figure 1).

Make a small 2-3 cm incision, 2 cm proximal to the proximal tip of the greater trochanter. Angle this incision posteriorly at its proximal end. Carry the incision through the fascia. Palpate the greater trochanter (Figure 2).
ENTRY PORTAL

Assemble the Entry Tool with Honeycomb Insert (251100). The Entry Tool can be set for the appropriate limb by pulling back on the suction port and allowing it to snap back into place with the R (right) or L (left) showing in the circular window in the handle. This allows blood flow to quickly exit the tool. Attach suction to the Entry Tool to assist in blood evacuation and minimize aerosolisation of blood to operative team (Figure 3).

FEMORAL ANTEGRADE SURGICAL TECHNIQUE FOR STANDARD FEMORAL OR RECON LOCKING MODES

Place the Entry Tool with Honeycomb Insert through the incision to bone. Adjust to align the Entry Tool with the axial line of the femoral shaft in the A/P and lateral image views. This may require placing pressure on the Entry Tool to align the Tip Threaded Guide Wire (251110) with the axial line of the femur. Insert the Guide Wire when the axial line and drill alignment is acceptable. The position will usually located on the tip of greater trochanter.

A second 3.2 mm Tip Threaded Guide Wire can be used to further define the correct entry portal. In this way, the position in the trochanter is maintained should the first pilot drill be removed or repositioned. The Guide Wire will snap fit into the Power. Once proper placement of the Guide Wire has been established, the “honeycomb” insert should be removed (Figure 4).
Tighten the Entry Reamer Connector (251140) onto the 14 mm Channel Reamer (251120) and insert the 12.5 mm Entry Reamer (251130) until it “clicks” into the assembly (Figure 5). Attach the 12.5 mm Entry Reamer to power to ream the proximal section of the femur through the Entry Tool. Adjust the Entry Reamer assembly over the Guide Wire and ream until the Entry Reamer Connector stops at the Entry Tool. This reamer assembly enlarges the proximal femur 1.0 mm over the diameter of the head of the nail to 14 mm. Remove the 12.5 mm Entry Reamer and Guide Wire, keeping the Entry Tool and 14 mm Channel Reamer in place (Figure 6).

Snap the T-Handle (030070) onto the Reducer (251150) (Figure 7). Place the Reducer through the Entry Tool and 14 mm Channel Reamer to reduce the fracture (Figure 8). Once the Reducer is in the medullary canal and has captured the distal fragment, the Ball-Tipped Guide Rod (251160) is inserted through it with the use of the Gripper into the distal femur in the region of the old postulus scar (Figure 9). The Gripper (251170) is useful in holding onto the Guide Rod during insertion and can be used to steer the Guide Rod Tip to the center of the canal (Figure 9 insert).

FRACTURE REDUCTION
CANAL PREPARATION

Canal preparation is dependent on surgical decision. If reaming is planned, use progressive reamers through the Entry Tool. Unreamed nails are selected based on preoperative planning, but should be of sufficient size to provide translational fill of the intramedullary canal in the mid-diaphysis. Once the Guide Rod is in place, remove the Reducer but leave the 14 mm Channel Reamer in place. Proceed to sequentially ream the femoral shaft 0.5 to 1.0 mm or more above the chosen nail diameter through the 14 mm Channel Reamer. For more curved femoral shafts, 0.5 to 1.0 mm of over reaming may be beneficial.

NOTE: For reamers larger than 12.5 mm, the Channel Reamer must be removed before reaming (Figure 10).

NAIL SELECTION

Determine nail diameter from image intensifier or templating. Never insert a nail that has a larger diameter than the last reamer used. Position the tip of the guide rod at the desired level of the tip of the nail considering fracture patterns and locking screw positioning. Measure the nail length by positioning the open end of the Nail Depth Gauge (251180) over the exposed end of the guide rod pushing the end down to the level of bone through the 14 mm Channel Reamer. Confirm the position on the image intensifier. The tip of the Nail Depth Gauge should line up slightly below the tip of the Entry Tool for correct placement. Read the nail length from the calibrations exposed at the other end of the Ruler. Leave the guide rod in place for placement of the nail. Exchange of the ball-tipped guide rod is not necessary (Figure 11).

<table>
<thead>
<tr>
<th>Nail type</th>
<th>Proximal End Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Pink</td>
</tr>
<tr>
<td>Right</td>
<td>Darkgolden</td>
</tr>
</tbody>
</table>
Surgical Technique

DRILL GUIDE ASSEMBLY

FEMORAL MODE

Insert the Quick Bolt (251230) into the Drill Guide (251190) and use the Guide Bolt Wrench (251220) to secure the bolt to the nail. Then screw the Quick Bolt (251230) onto the top of the Drill Guide. This assembly is used to drive the nail into the medullary canal (Figure 12). Insert the Skin Protector (251250) in the incision parallel to the Entry Reamer Tool. Remove the Entry Reamer Tool and 14 mm Channel Reamer. The Skin Protector will assist in maintaining control of the surrounding tissues and provide continued access to the bone. Advance the nail over the guide rod and carefully past the fracture. Remove the guide rod after the nail is inserted and before inserting the locking screws (Figure 13).

5.0 mm screws are to be used with 11 mm, 12 mm FAN Implants.
4.5 mm screws are to be used with 9 mm, 10 mm FAN Implants.

Proximal Screw: To place screws at a 50° angle from the greater to lesser trochanter, the following options are available (Figure 14):

A. PREDRILLING TECHNIQUE — Make a stab incision at the entry hole and push the Outer Drill Sleeve (251260) through the Drill Guide hole until it is touching the lateral cortex. Introduce the Inner Drill Sleeve (251270) through the Outer Drill Sleeve. Attach the 4.0 Drill Bit (251290) to power. Drill to, but not through the opposite cortex and measure for proper length. The length measurements are taken from the calibrations off the drill in relation to the end of the Inner Drill Sleeve (Figure 15).
The appropriate length 5.0 mm screw is selected and attached to the Screwdriver for locking screws (251350). The Drill and Inner Drill Sleeve are removed and the screw is inserted through the Outer Drill Sleeve. Rotate the Screwdriver Handle and place screw in bone. It is recommended that final tightening of the 5.0 mm screw should always be under manual control using the Screwdriver for locking screws (Figure 16).

B. SCREW LENGTH GAUGE—Predrill through both cortices. The surgeon should check that the Outer Drill Sleeve is positioned so that it is touching the bone. The Screw Depth Gauge (251340) cover is then unscrewed and removed. The hooked end is inserted down the Screw Guide and through the bone. It is then drawn back so that the hook engages the outer surface of the far cortex. The correct length of screw can now be read at the top of the Outer Drill Sleeve (Figure 17). The appropriate length 5.0 mm screw is selected and attached to the Screwdriver. It is recommended that final tightening of the 5.0 mm screw should always be under manual control using the Screwdriver for locking screw (Figure 18).

NOTE: Once screw is seated, the Connect Rod (251360) in the canulate T-Handle turned counterclockwise and the Screwdriver for locking screws releases the screw to remove the T-Handle (Figure 19).

RECON MODE

6.4 mm screws are to be used with our 10 mm, 11 mm and 12 mm FAN and Trochanteric Implants for placing screws into the femoral head.

Insert the Guide Bolt (251210) into the Drill Guide (251190) and use the Guide Bolt Wrench (251220) to secure the bolt to the nail. Connect the Proximal Aiming bar (Femoral) (256100) to the Drill Guide. The guide is keyed so that it will only fit one way.

Tighten the Proximal Guide Bolt (251200) by hand. Use the end of the Guide Bolt Wrench (251220) to finish tightening the Proximal Aiming bar (Femoral) (256100) in place. Check the alignment of the Aiming bar to the screw holes by passing the Trocar (251430) through the Outer Drill Sleeve up into the holes of the nail. Screw the Impactor onto the top of the Drill Guide (Figure 20). This assembly is used to drive the nail into the medullary canal. Insert the Skin Protector (251250) in the incision parallel to the Entry Reamer Tool. Remove the Entry Reamer Tool and Channel Reamer. The Skin Protector will assist in maintaining control of the surrounding tissues and provide continued access to the bone. Advance the nail over the guide rod and carefully past the fracture. Remove the guide rod after the nail is inserted and before inserting the locking screws (Figure 21).
INTERLOCKING FOR RECON MODE

Proximal Screws: Two aspects of screw placement into the femoral head must be noted before drilling into the femoral head: (1) Alignment of the anteversion; and (2) Depth of nail insertion. To begin, rotate the C-Arm proximally until a true line of the hip is visualized, this gives the correct axis of alignment for anteversion. Rotate the handle of the Proximal Aiming bar (Femoral) (256100) until it bisects the femoral head in the lateral view (Figure 22). This should assist in setting the correct anteversion position of the screws. Mark this position with a skin marker on the leg parallel to the driving handle. Next, rotate the C-Arm into an A/P view using the calibrated notches on the proximal attachment of the nail, which is visualized radiographically, to determine from preoperative planning what depth of nail insertion will be required to allow both screws to be centered in the head. As a rule, the inferior screw is placed first, though in situations where the neck is large enough, the proximal screw can be placed, again, approximately 4-5 mm from the superior cortical margin of the femoral neck. These screws are angled at 130° in relation to the shaft. If both screws will not seat within the femoral head, it is probable that too much varus positioning of the proximal fragment has occurred, or the proximal nail entry portal is too lateral (Figure 23).

6.4 MM SCREW PLACEMENT TECHNIQUE: Make an incision at the entry holes of the proximal screw sleeves, and then connect the two puncture wounds for approximately a 3 cm incision that will accommodate the insertion of both screws (Figure 24). Insert the Inner Drill Sleeve (251270) into the Outer Drill Sleeve (251260) and push to bone. Insert the 4.0 Drill Bit (251290) into the Inner Drill Sleeve and connect to power. Drill into the femoral neck and head to the desired depth and position (Figure 25). Remove the Inner Sleeve and drill the femoral neck with the 6.4 Drill Bit (251320) to slightly less than the depth desired. Check the alignment in A/P and 15° lateral views again before removing the 6.4 mm drill. Use the 6.4 mm Tap (251330) through the Outer Drill Sleeve to prepare the bone for screw insertion. Measure the depth for the screw length from the calibrations on the drill or tap with respect to the Outer Drill Sleeve (Figure 26).
There may be some bending of the nail, due to the pressure and weight of the soft tissues and the bone. Medio-lateral bending of the nail will not affect the targeting significantly, since this is the plane of screw insertion, but any bending antero-posteriorly will result in failure of the locking. The stabilizing system is therefore designed to correct antero-posterior alignment between the guide bar and the nail. The Distal Outrigger provides the mounting point for a Positioning Rod (251390) which is inserted down to the nail through the anterior femoral cortex, and the U-shaped Stabilizing Spacer correct the distance and lock the Stabilizing Rod to the outrigger.

DISTAL LOCKING

- Attach the appropriate length 6.4 mm screw to the Screwdriver for locking screws (251350). Tighten the proximal screws when the traction is released to maximize compression at the fracture site (Figure 28). Once an acceptable position is obtained, detach the Screwdriver for locking screw from the screws by wrenching counterclockwise the Connecting Rod (251360), proximal locking is complete (Figure 29).

The stages of distal locking therefore are as follows:

- Stabilize the Distal Aiming bar (Femoral) in the appropriate position to correct for any bending of the nail.

- Make the incision(s) for distal locking, insert the Drill Sleeve down to the bone, and complete the procedure.
Surgical Technique

An Inner Drill Sleeve (251270) is inserted through the hole in the outrigger down to the skin anteriorly, and by palpation is centred over the middle of the femur. The point of contact with the skin is noted. A 15 mm incision is made at this point, down to the deep fascia. The muscle is then split longitudinally down to the bone.

The Trocar (251430) is inserted into the Inner Drill Sleeve, and the two pushed together down to the bone. The Inner Drill Sleeve is centered over the middle of the femoral shaft, by palpation, using gentle pressure on the Aiming bar in the frontal plane.

The Trocar is withdrawn, the 4.0 DRILL BIT is inserted down to the bone, using gentle pressure to keep the point in contact with the cortex. The anterior cortex only is then drilled.

Remove the 4.0 Drill bit. The Positioning Rod (251390) is inserted through the hole in the Distal Targeter, and the hole in the anterior femoral cortex, down to the nail (Figure 32), contact being confirmed by tapping its tip on to the nail.

Stabilization of the Distal Aiming bar (Femoral)

The Distal Aiming bar (Femoral) (256110) is attached to the Proximal Aiming bar (Femoral) (256100) and the Distal Guide Bolt (251420) tighten firmly by hand (Figure 30). There have two holes for Guide Bolt to fit in the Proximal Aiming bar (Femoral). Make sure to use the correct one that will promise the curvature of the Aiming bar structure match the curvature of the femur or the nail.

Figure 30

The Targeter (Femoral) (256130) is now attached on the anterior side of the Distal Aiming bar, at the middle of the two distal locking holes. The Distal Guide Bolt (251420) is tightened firmly by hand (Figure 31).

Figure 31

Figure 32

NeoGen Femoral Nail System
The E Block (Femoral) (256150) is now attached so that: the upper fork, marked the Number corresponding with the nail size, fits into the groove in the shaft of the Stabilizing rod. The two other forks grip the screw guide and the Targeter (Femoral) (Figure 33).

The handle of the Stabilizing rod is now held so that its tip is in contact with the nail. The surgeon maintains this contact throughout. If the handle is pushed too hard, it is sometimes possible to push the tip of the stabilizing rod past the nail. This must be avoided, since it will result in the drill bit passing posterior to the nail. Gentle contact is all that is required.

Distal Locking

Outer drill sleeve are now inserted through each of the holes in the Targeter (Femoral) (Figure 34). A single 4-5 cm incision is made over the points of contact with the skin, down through the deep fascia. The incision is deepened by blunt dissection, splitting the ilio-tibial tract longitudinally, down to the bone, taking care to keep the incision in line with the fibres of the ilio-tibial band.

The more proximal Outer drill sleeve is now inserted down to the bone, with the aid of the Trocar (Figure 35).
An Inner drill sleeve is inserted into the outer drill sleeve, the 4.0 Drill Bit is attached to the Inner drill sleeve (Figure 36-A).

The surgeon now grips the T-handle of the Stabilizing Rod, to keep its tip against the nail, and MAINTAINS THIS POSITION THROUGHOUT THE DRILLING PROCEDURE. The first locking hole is now drilled as for proximal locking, and the Inner drill sleeve is removed.

The Replacement Rod (251400) is now inserted into the Outer Drill Sleeve (Figure 36-B), so that it passes through the nail, and engages the far cortex. This Replacement rod has now stabilized the position of the Aiming bar. Do not drill the second hole until the angled Replacement rod is in position.

Now that Screw Guide alignment is maintained by this Replacement Rod, the surgeon may release the handle of the stabilizing rod.

The distal Outer drill sleeve with the Inner Drill Sleeve inserted is now advanced down to the bone, and the second locking hole drilled (Figure 37). The appropriate screw length can be read from the mark on the Drill bit, which related with the top of the Outer drill sleeve.

A locking screw of correct length is now inserted into the second Outer drill sleeve, rotated through the bone with the Screwdriver for locking screws (Fig.38).

The Replacement Rod is removed from the first screw guide, and the surgeon again maintains the position of the Stabilizing rod by gripping its T-handle. The same technique is followed for insertion of the remaining locking screw. A check is now carried out with the Image Intensifier or by X-ray to confirm that both screws have passed through the nail and that reduction has been maintained. The Stabilizing rod, Outer drill sleeve and Targeter are removed.
OPTION—Estimating locking screw length using the Screw Depth Gauge

If there is any doubt about the correct length of locking screw, either in respect of the measurement recorded following drilling, or because the surgeon omitted this step, the Screw Depth Gauge (251340) may be used as follows: the surgeon should first check that the screw guide is positioned so that it is touching the bone. The Screw depth gauge cover is then unscrewed and removed.

The hooked end is inserted down the Outer drill sleeve and through the bone. It is then drawn back so that the hook engages the outer surface of the distal cortex. The correct length of screw can now be read at the top of the Outer drill sleeve. This Screw depth gauge is only suitable for use with NeoGen nails, since its accuracy depends on a fixed length of Outer drill sleeve.

CLOSURE

On completion of the procedure, unscrewed the Quick bolt and the Proximal Aiming bar (Femoral) is removed, wounds are irrigated and closed in a standard fashion (Figure 39).
NeoGen Femoral Nail System

Surgical Technique

Screw Selection

<table>
<thead>
<tr>
<th>Nails Type</th>
<th>RECON Screws</th>
<th>Proximal Locking Screws</th>
<th>Distal Locking Screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeoGen Femoral Nails, 12mm</td>
<td>6.4 RECON Screws</td>
<td>5.0 Locking Screw</td>
<td>4.5 Locking Screw</td>
</tr>
<tr>
<td>NeoGen Femoral Nails, 10mm</td>
<td>6.4 RECON Screws</td>
<td>5.0 Locking Screw</td>
<td>4.5 Locking Screw</td>
</tr>
<tr>
<td>NeoGen Femoral Nails, 8mm</td>
<td>6.4 RECON Screws</td>
<td>5.0 Locking Screw</td>
<td>4.5 Locking Screw</td>
</tr>
<tr>
<td>NeoGen Femoral Nails, 6mm</td>
<td>6.4 RECON Screws</td>
<td>5.0 Locking Screw</td>
<td>4.5 Locking Screw</td>
</tr>
</tbody>
</table>

NeoGen Femoral Nails, 12mm

- **Proximal Radian:** 5°
- **Angle:** 130°

NeoGen Femoral Nails, 10mm

- **Proximal Radian:** 5°
- **Angle:** 130°

NeoGen Femoral Nails, 8mm

- **Proximal Radian:** 5°
- **Angle:** 130°

NeoGen Femoral Nails, 6mm

- **Proximal Radian:** 5°
- **Angle:** 130°

NeoGen Locking Screw φ5

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Products Description</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110325</td>
<td>NeoGen Locking Screws 5X25mm</td>
<td>CM</td>
</tr>
<tr>
<td>33110340</td>
<td>NeoGen Locking Screws 5X30mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110355</td>
<td>NeoGen Locking Screws 5X35mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110370</td>
<td>NeoGen Locking Screws 5X40mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110385</td>
<td>NeoGen Locking Screws 5X45mm</td>
<td>Regular</td>
</tr>
</tbody>
</table>

NeoGen Locking Screw φ4.5

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Products Description</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110425</td>
<td>NeoGen Locking Screws 4.5X25mm</td>
<td>CM</td>
</tr>
<tr>
<td>33110440</td>
<td>NeoGen Locking Screws 4.5X30mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110455</td>
<td>NeoGen Locking Screws 4.5X35mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110470</td>
<td>NeoGen Locking Screws 4.5X40mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110485</td>
<td>NeoGen Locking Screws 4.5X45mm</td>
<td>Regular</td>
</tr>
</tbody>
</table>

NeoGen RECON Screws φ6.4

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Products Description</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110525</td>
<td>NeoGen RECON Screws 6.4X25mm</td>
<td>CM</td>
</tr>
<tr>
<td>33110540</td>
<td>NeoGen RECON Screws 6.4X30mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110555</td>
<td>NeoGen RECON Screws 6.4X35mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110570</td>
<td>NeoGen RECON Screws 6.4X40mm</td>
<td>Regular</td>
</tr>
<tr>
<td>33110585</td>
<td>NeoGen RECON Screws 6.4X45mm</td>
<td>Regular</td>
</tr>
</tbody>
</table>

NeoGen Caps (Femoral)

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Products Description</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110620</td>
<td>NeoGen Caps, C.13</td>
<td>Regular</td>
</tr>
<tr>
<td>33110600</td>
<td>NeoGen Caps, C.13+5</td>
<td>Regular</td>
</tr>
</tbody>
</table>

Note: The Femoral nail could be used as Reconstruction nails with the RECON screws.
INSTRUMENTS

- 0.0070 T-Handle with Quick Coupling
- 050090 Flexible Reamer(Φ9.0)
- 050140 Flexible Reamer(Φ14.0)
- 251100 Entry Tool
- 251101 Entry Tool-1
- 251120 14mm Channel Reamer
- 251130 12.5mm Entry Reamer
- 251140 Tip Threaded Guide Wire
- 251150 Reducer
- 251160 Ball Tip Guide Rod
- 251170 Gripper
- 251200 Proximal Guide Bolt
- 251220 Guide Bolt Wrench
- 251240 Hammer
- 251250 Skin Protector
- 251260 Outer Drill Sleeve
- 251270 Inner Drill Sleeve
- 251280 Small Drill Sleeve
- 251290 4.0 Drill Bit
- 251300 Drill Guide
- 251310 Guide Bolt Wrench
- 251320 Quick Bolt
- 251330 Guide Bolt
- 251340 Guide Bolt Wrench
- 251350 Guide Bolt Wrench
- 251360 Ball Tip Guide Rod
- 251370 Gripper
- 251380 T-Handle with Quick Coupling
- 251390 0.0090 Flexible Reamer(Φ9.0)
- 251400 Flexible Reamer(Φ14.0)
Surgical Technique

- NeoGen Femoral Nail System

- 251300 5.0 Tapping
- 251310 4.5 Tapping
- 251340 Screw Depth Gauge

- 251350 Screw Driver for locking screws
- 251360 Connecting Rod
- 251370 Extractor

- 251380 Positioning Rod Drill
- 251390 Positioning Rod
- 251400 Replacement Rod

- 251430 Trocar
- 251440 Thread Pin Sleeve
- 251600 Proximal Aiming bar (Femoral)

- 256110 Distal Aiming bar (Femoral)
- 256130 Targeter (Femoral)
- 256150 E Block (Femoral)

- 251315 6.4 Drill Bit
- 261180 Distal Aiming bar (Femoral)
NOTE